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INTRODUCTION

Reductionist single-gene perturbation approaches using Caenorhabditis elegans as a model organism

have led to fundamental discoveries in aging (Kappeler et al., 2008; Kenyon, 2011). Two important path-

ways include the highly conserved insulin-like signaling (ILS) pathway (Kappeler et al., 2008; Kenyon,

2011) and the signals from th(Soltow
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To assess the effect of the input information on output GRNs, we considered different combinations of

input regulators (2,795 genes, which are either in GenAge database (Tacutu et al., 2018) (22.6%), known

transcription factors in C. elegans (25.8%), or display high-variability in their expression (51.6%); STAR

Methods), time series length, and sets of priors; and inferred a total of 50 GRNs with binary, directed edges

from regulators to targets (Table S4). Despite the fact that NI approaches aim to minimize the number of

regulatory interactions (for instance, by explicitly incorporating regularization terms in the regression), the

inferred GRNs are very dense. On average each regulator has more than 653.6 targets, almost two-fold the

maximum number of regulators per target reported in ModERN’s ChIP-seq datasets of 350 (Kudron et al.,

2018), suggesting that the number of interactions is overestimated. Each of the NI methods produces

different scores for each predicted interaction and there is no standard objective criterion to filter edges

that is not based on ad hoc knowledge (Arrieta-Ortiz et al., 2015). Therefore, to identify spurious interac-

tions, we compared the edge scores of each network to the distribution of edge scores obtained from a

randomized time-series for each input combination and retained interactions that fall below the 5% signif-

icance level, reducing to almost a third of the number of targets per regulator (224 on average).

We analyzed the accuracy of inferred networks against WT-GS and found that none of the GRNs performs

systematically better than the others (Figures S1C and S1D). Therefore, as a final step in our pipeline, we

considered all 50 GRNs to build consensus networks. First, we identified nine groups of networks based

on edge overlap (Figure S1E; STAR Methods). Then, for each group we built a consensus network by keep-



inherent technical variability of the RNAi technique (Kamath and Ahringer, 2003) (Figures S2A and S2B) and

calculated the Pearson correlation coefficient (PCC) between the changes in expression levels of regulator-

target pairs from at least six replicates (Figure S2B, Table S7, STAR Methods, https://s-andrews.github.io/

wormgrn/qpcr/)

To determine whether the knockdown (KD) of a regulator affects a target, we chose the PCC cut-off value at

the inflection point of a curve obtained when plotting the average precision versus cut-off values (PCC =

0.75, Figure 2

https://s-andrews.github.io/wormgrn/qpcr/
https://s-andrews.github.io/wormgrn/qpcr/


regulators and targets, which is equal to 0.9% (STARMethods, for similar analyses see Marbach et al., 2012;

Siahpirani and Roy, 2016; Miraldi et al., 2019). We also find that as we increase the number of tested targets

per regulator, the number of correctly predicted edges for each regulator fluctuates less and approaches

the mean precision (Figure S2C). The apparent convergence toward the mean suggests that despite this

being a very partial validation (we only tested targets for 10 out of 1396 regulators), the errors we observe

are unbiased (Figure S2







complexes. In addition, we find genes encoding metabolic enzymes (carboxypeptidase, adenosyl-hydro-

lase, and ubiquinone oxidoreductases); a glutamate receptor, a gene encoding a protein folding chap-

erone and several novel genes of unknown function (Table 2





reporters. First, we quantified in a semi-automatic manner (STAR Methods) the in vivo expression of a



Figure 5. Global characterization of the novel aging genes reveals genes sharing the same metabolic features and

pathways as DAF-16/FOXO and ILS

(A) Comparison of the in vivo fluorescence measures of sod-3p:GFP versus dhs-3p::dhs-3::GFP in glp-1ts animals at day 4

of adulthood. dhs-3p::dhs-3::GFP is a translational reporter which localizes to the intestinal lipid droplets (LD). sod-

3p:GFP is a transcriptional reporter for the expression of superoxide dismutase 3 (sod-3), a direct target of DAF-16. Colors

correspond to lifespan phenotype as shown in the figure. L4440 is the control/empty vector (Table S15).

(B) Novel aging genes sharing known aging and metabolism targets with daf-16 and age-1



green circle
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multi-omics datasets. From the WormExp, modERN, Cis-BP, and GEO databases, we manually identified

context-specific datasets, reconciled and curated 380,023 interactions in young adult C. elegans, freely

accessible to the community. We obtained for the first time, genome-wide GRNs that are contextual to ag-

ing in C. elegans whose modular structure is biologically meaningful, providing a systems-view of the reg-

ulatory interactions underpinning the aging process. This study presents a novel approach that integrates

NI with large-scale network analysis tools applied to networks containing many errors at the ‘‘local’’ level,

typical of NI-derived networks. Our work provides a compelling example where a network that contains un-

biased errors at a local level, can be predictive as long as the global structure is robust. The study led to the

discovery of 50 novel regulators of glp-1(ts) longevity, augmenting the number of regulators of the pathway

by 62.5% and the majority of which have an identifiable human orthologue. This pipeline presents a min-

imum of 4.8% hit rate, more than a two-fold increase compared to the blind genetic screening in the

glp-1(ts) which reported a 2.1% success rate (Berman and Kenyon, 2006). Although the fold change may



the gene interaction network, where genes in this category share a similar gene expression profile with age-

1i and daf-16i (Figures 5B and S6E).

From our mechanistic studies we have placed the transcriptional activator sup-37 alongside with daf-16

regulation. sup-37 has been previously identified as a DAF-16 target by chromatin precipitation analysis

(Wook Oh et al., 2006) further strengthening our findings. It is interesting to also notice that the PCC

network also shows that sup-37 as a positive regulator of daf-12, pha-4 and the PTEN homologue and

ILS pathway component daf-18
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

OL309 T21H3.1 F CCGTCAGTCCACAGGACAAG

OL310 T21H3.1 R GCAGCCCATGGAGTGTGAT

OL311 Y26D4A.21 F AAAATGTAAGAT

TCATCCAACCGAC

OL312 Y26D4A.21 R CTCGTCCGATTGAATTGCCTG

OL313 Y51H7C.13 F GCTATTGGAACCAAGTGCTGC

OL314 Y51H7C.13 R

TTTGGGATGGAAGGTTCGGG

All oligos were

designed in house

Does not apply to any

oligos in this list/ NA

OL315 Y54F10AM.5 F TCTTTGAAGCGTTCCTGCCT

OL316 Y54F10AM.5 R TGGTCGTCATGGCACTTTGA

OL317 Y51H1A.3 F GGAATTGGGGAGAGCTCGTG

OL318 Y51H1A.3 R CGATCGAGTTCCAGGTGGTG

OL319 Y71G12B.10 F GTTATGAGGTCTCGCTGGGC

OL320 Y71G12B.10 R GTTTTTCGGCTGGCACACTT

OL321 Y43F8B.1 F CGAGCAACTAGCCCAGAAGT

OL322 Y43F8B.1 R GAGCTCGGAATCAGCTACCC

OL323 lpl-1 F AGGTGTTAGGCATTTTGTGGAC

OL324 lpl-1 R ACCCATACACCTGTATTCGCA

OL325 atp-1 F AAACCGGAAAGACCGCCATT

OL326 atp-1 R GACAGCGACGTAGATGCAGA

OL327 mdh-2 F CTTCCAGCAAAGACCCTCGT

OL328 mdh-2 R AGAAGAGCGACCTTTGGAGC

OL329 paf-2 F AGTTGGTCATGTCATCCGCT

OL330 paf-2 R TTGCTTTTTGGAAGTCCGTTGT

OL331 str-7 F TTTCACATCAAACGGCAATTCG

OL332 str-7 R GGAGGAACGTGTGAAACAAGTAT

OL333 tag-120 F TATTTTCACTCTCTCGGCAGCA

OL334 tag-120 R TCCACTGCATACTGTGGTGAT

OL335 sucl-1 F GGGAGCTGCTCGTTTCTACA

OL336 sucl-1 R AGGTACCCTGCTTTCCTGTG

OL337 tald-1 F GAATTCGGGCTGCTAACACG

OL338 tald-1 R GGCGAGATTAGGGTGACTCC

OL339 tiam-1 F CCTTGTGATGAGCAGCCAGA

OL340 tiam-1 R ACGCGAAACATTCCAGCAAAT

OL341 rhy-1 F

TGACACTTGTCGTCATCGGAA

All oligos were

designed in house

Does not apply to any

oligos in this list/ NA
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Most assays performed in this study used sterile glp-1(e2144)ts or fem-3(q20)ts C.elegans that were main-

tained at 16�C on NGM with OP50 E. coli. To induce sterility, L1 synchronised larvae were added to NGM

plates containing HTT115 E coli at 25�C.
Worm maintenance and synchronization to obtain time-series RNA-seq datasets

Worms were maintained at 16�C on NGM with OP50 E. coli. Synchronised experimental populations were



METHOD DETAILS

RNA-sequencing

Eggs were collected by bleaching and L1 larvae were hatched in the absence of food. Synchronisation was

obtained by adding L1 larvae to plates with HTT115 E coli strain containing the empty vector plasmid L4440

on standard NGM plates containing 50 mg/ml Carbenicillin and 1 mM IPTG until harvesting and grown at

25



well. Contaminated plates, starved plates, or plates with outwardly defective or arrested animals were dis-

carded (104 conditions).

Glp-1(ts) lifespan screen 2. 93 candidates were selected based on novelty as explained in the main text.

The experiment was set-up as described above and the percentage of survival was assayed every 2 to

3 days (at days: 3, 5, 7, 10, 12, 14, 16, 17, 19, 21, 24 and 26) by scoring animals based on movement. Three

biological replicates were conducted and each of them included two technical replicates. To ensure the

identity of the genes that were knocked down, each one of the clones that significantly change the lifespan

was sequenced using M13 forward primer. Day 19 normalised percentage of survival was calculated using

the same procedure. For this screen, we used day 19 survival rate as we found that it is closer to the mean

survival.

Fem-3(ts) lifespan screen

To evaluate the effect of RNAi clones in normal lived animals we used fem-3(q20)ts.The experiment was set-

up at 25�C as described in the two-step glp-1(ts) lifespan screening, and the percentage of survival was as-

sayed at day 13 of adulthood, which is the time point when animals grown in bacteria expressing empty

vectors reached roughly 50% survival. fem-3(q20)ts survival at day 13 was compared with glp-1(ts) survival

at day 19, at which time both strains have reached 50% survival.

L4 glp-1(ts



motifs, using the bedtools window command with 1000 bp window size. For eY1H data which already are

interactions between TF and genes, we only included an interaction if the TSS site of the target gene over-

laps with an open ATAC-seq region by at least one base pair according to the bedtools intersect output

(version 2.29.0, Quinlan and Hall, 2010).

We used the following sources of TF-gene interactions: 1) 115 L4 or young-adult ChIP-seq datasets from

ModERN (Kudron et al., 2018), 2) two young-adult ChIP datasets (GSE28350, GSE81521) (Hochbaum

et al., 2011; Li et al., 2016), 3) 202 unique TF DNA recognition motifs using ‘‘direct evidence’’ option

from CiS-BP motif database (Weirauch et al., 2014), obtained through RTFBSDB R package (Wang et al.,

2016), and 4) 13,501 TF-gene interactions from eY1H assay (Fuxman Bass et al., 2016). Regulatory se-

quences were obtained using biomaRt R package (accessed on 31st Oct 2017) (Durinck et al., 2009). This

study usedWBcel235/ce11 version of the C. elegans genome, andWormBaseWS260 genome annotations.

For gene-gene interactions, we based our curation on theWormExp v1.0 database (Yang et al., 2016) which

has compiled nearly all C. elegans published expression data over the past decade (last updated on 27/07/

2017) (Yang et al., 2016). Out of the 361 studies, 298 studies were in ’Mutants’, ’DAF/Insulin/food’, ’Devel-



then keep the largest PCC (in absolute value). After the 1,000 iterations we obtain a distribution of extreme

(largest in absolute value) PCCs conditioned on the expression vector of the KD and target genes and we

https://www.ncbi.nlm.nih.gov/geo/


Genome-wide C. elegans gene regulatory network inference

Gene input selection. To select genes whose gene-expression time series would be fed to network

inference algorithms, we applied a threshold of a minimum of log2-difference between the highest and

the lowest values across all time conditions. Out of 20,191 protein coding genes, 12,884 genes were above

that threshold and thus, RNA-seq data for these genes was used as input for the inference algorithms.

Network inference algorithm selection. We used Inferelator (Arrieta-Ortiz et al., 2015), MERLIN-P

(Siahpirani and Roy, 2016) and Time-lagged Ordered Lasso (Nguyen and Braun, 2018) (TOL) inference al-



amount of the potential number of interactions that can be inferred. Because of this, we resorted to per-

formance metrics that are more suitable to measure whether the observed signal differs from random or

not. Specifically, we use the precision fold enrichment introduced in (Roy et al., 2013) and the area under

the precision fold enrichment curve.

Precision fold enrichment. It measures the precision (that is the fraction of predicted positive interac-



nodes or not. Using the same procedure described above we calculated precision and accuracy for

each randomisation. We then obtained from this ensemble the expected average precision and ac-

curacy as well as their standard deviations to obtain Z-scores.
Bayesian model selection with stochastic block models (SBM) and definition of structural

modules

Stochastic block models are simple generative models that assume that there are underlying groups of no-

des in the network and that the probability that there is an edge running between nodes (i,j) only depends

on the groupmemberships of i and j. As generative models, SBMs are amenable to Bayesian inference, and

therefore to model selection techniques that allow us to find the best division of the nodes into groups.

Nodes in the same group have statistically similar connection patterns and are thus interpreted to play a

similar role in the network. Note that there is no a priori selection neither of the number of groups nor

of the interactions between the groups. SBMs have been shown in the literature to be appropriate models

for real network topology being successful at both error prediction (Guimerà and Sales-Pardo, 2009) and

community detection (Peixoto, 2014).

We use a minimum description length approach (MDL), which is equivalent to maximizing the posterior, to

find the best division of nodes into groups (https://graph-tool.skewed.de/; Peixoto, 2014). Specifically, we

use the MDL approach to identify the best SBM variant (non degree-corrected and degree-corrected with

and without hierarchical priors for the groups). Because the minimisation process is heuristic, we ran the

algorithm 1,000 times to identify the best model (with minimum description length, S) and therefore

best division of nodes into structural modules. We find that the best model is a degree-corrected SBM

with hierarchical priors. We therefore obtain a hierarchical tree of network divisions into structural modules.

Note that there is no a priori selection neither of the number of groups nor of the interactions between the

groups. The inference methodology finds the division into groups that best describes the observed

topology.

Input-core-output structure. We represent structural modules, m, at the second most coarse-grained

level in the hierarchy– level 1 (Figure S2D). We select this level because it summarises the networks and

it is the first level that is significantly correlated with empirical modules for the two smallest GRNs we select

(max AUFE and max PFE). In Figures 3, S3, andS4, connections between structural modules have a weight

equal to the number of connections between genes in the two modules. We only represent connections

with a weight > 260 to represent the main structure of the network of structural modules. All selected

consensus GRNs have an input-core-output structure. In networks with this kind of topology it is possible

to define three layers with different topological properties. The input layer has genes that are either

connected to genes in other layers or with genes within the same layer. The core layer has genes that

are connected either to genes in the output layer or to genes in the core layer. Genes in the output layer

only connect to genes in that same layer. This type of networks thus has a clear direction of ‘information’ or

regulatory flow from the input layer to the output layer.

To better characterize the input-core-output structure, the tables below show the aggregate connections

between the input, core and output layers.

https://graph-tool.skewed.de/


https://s-andrews.github.io/wormgrn/qpcr/
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