My research focuses on the molecular mechanisms that control the Rac protein family, which regulates cell shape, cell movement, oxygen radical formation and gene expression, in particular, the proteins that activate Rac, so-called Rac-GEFs. A few years ago, my lab discovered a new type of Rac-GEF, the P-Rex family, and we have been studying the mechanisms that regulate their activity and their functional roles.
We found that P-Rex family Rac-GEFs are important for the ability of our white blood cells to defend us against bacterial and fungal infections, for the shape and electrical functions of nerve cells that control the coordination of our movements, and for the distribution of skin pigment cells during development. We also participated in studies which showed that the deregulation of the cellular amount or activity of P-Rex family Rac-GEFs contribute to cancer growth and metastasis.
Currently, I am investigating new functional roles of P-Rex and other Rac-GEFs, particularly in inflammatory cells, and exploring new ways of monitoring Rac-GEF activity.
Rac GTPases are required for neutrophil adhesion and migration, and for the neutrophil effector responses that kill pathogens. These Rac-dependent functions are impaired when neutrophils lack the activators of Rac, Rac-GEFs from the Prex, Vav, and Dock families. In this study, we demonstrate that Tiam1 is also expressed in neutrophils, governing focal complexes, actin cytoskeletal dynamics, polarisation, and migration, in a manner depending on the integrin ligand to which the cells adhere. Tiam1 is dispensable for the generation of reactive oxygen species but mediates degranulation and NETs release in adherent neutrophils, as well as the killing of bacteria. , Tiam1 is required for neutrophil recruitment during aseptic peritonitis and for the clearance of during pulmonary infection. However, Tiam1 functions differently to other Rac-GEFs. Instead of promoting neutrophil adhesion to ICAM1 and stimulating β2 integrin activity as could be expected, Tiam1 restricts these processes. In accordance with these paradoxical inhibitory roles, Tiam1 limits the fMLP-stimulated activation of Rac1 and Rac2 in adherent neutrophils, rather than activating Rac as expected. Tiam1 promotes the expression of several regulators of small GTPases and cytoskeletal dynamics, including αPix, Psd4, Rasa3, and Tiam2. It also controls the association of Rasa3, and potentially αPix, Git2, Psd4, and 14-3-3ζ/δ, with Rac. We propose these latter roles of Tiam1 underlie its effects on Rac and β2 integrin activity and on cell responses. Hence, Tiam1 is a novel regulator of Rac-dependent neutrophil responses that functions differently to other known neutrophil Rac-GEFs.
Norbin is an adaptor protein that binds numerous G protein-coupled receptors (GPCRs), is highly expressed in neurons, and is essential for a functioning nervous system in rodent models. Yet, beyond its control of neurite outgrowth and synaptic plasticity, few cellular roles of Norbin have been investigated to date. Furthermore, while Norbin is known to regulate the steady-state cell surface levels of several GPCRs, only in one case has the protein been shown to control the agonist-induced receptor internalisation which serves to attenuate GPCR signalling. Here, we generated a Norbin-deficient PC12 cell line which enabled us to study both the cellular functions of Norbin and its roles in GPCR trafficking and signalling. We show that Norbin limits cell size and spreading, and is required for the growth, viability and cell cycle progression of PC12 cells. We also found that Norbin regulates both the steady-state surface level and agonist-induced internalisation of the GPCR sphingosine-1-phosphate receptor 1 (S1PR1) in these cells, suggesting that its role in agonist-dependent GPCR trafficking is more widespread than previously appreciated. Finally, we show that Norbin limits the S1P-stimulated activation of Akt and p38 Mapk, and is required for the activation of Erk in PC12 cells. Together, our findings provide a better understanding of the cellular functions of Norbin and its control of GPCR trafficking.
Rac-GTPases and their Rac-GEF activators play important roles in neutrophil-mediated host defence. These proteins control the adhesion molecules and cytoskeletal dynamics required for neutrophil recruitment to inflamed and infected organs, and the neutrophil effector responses that kill pathogens.